Question		ion	Expected Answers		Additional Guidance		
1	1 a		static / homogeneous	B1	Uniform (density)		
			infinite / infinite number of stars	B1	Do not allow isotropic or fixed		
	b	(i)	gradient of graph = H_0	C1			
			value $H_0 = 66 \pm 4$ ⁻¹ Mpc ⁻¹)	A1			
		(ii)	value $H_0 = 66 \pm 4$ ⁻¹ Mpc ⁻¹) age = 1 / H_0 ($H_0 = 2.1 \times 10^{-18} \text{ s}^{-1}$)	C1	ecf from H ₀ value		
			$= (1 / 66 \times 3.2 \times 10^{-20} \times 3.2 \times 10^{7})$	C1	Or correct age in seconds (4.7 x 10 ¹⁷ s)		
			$= 1.5 \times 10^{10} (1.48 \times 10^{10}) $ (year)	A1	Answer will depend on H ₀ value in (b)(i) Minus one if Mega or kilo omitted		
	С	(i)	$\rho_{c} = 3H_{0}^{2} / 8\pi G$ = [3 x (2.1 x 10 ⁻¹⁸) ²] / (8 x \pi x 6.67 x 10 ⁻¹¹) = 7.9 x 10 ⁻²⁷ (kg m ⁻³)	C1 A1	If units of H ₀ not converted or converted incorrectly then maximum one out of two ecf from H ₀ value in (b)(i)		
		(ii)	if average density of the Universe is less than critical then it will be too small to stop it expanding / it goes on forever	B1	do not allow answers open, closed and flat		
			if the average density of the Universe is greater than the critical value it will cause the contraction (and produce a big crunch)	B1			
			close to critical value and therefore a universe expands that will go towards a limit / expands at an ever decreasing rate asymptotic	B1			

d	galaxies are moving apart / universe is expanding	(B1)	Allow stars for galaxies
	if galaxies have always been moving apart then at some stage they must have been closer together / or started from a point	(B1)	allow from a singularity
	evidence in red shift either optical / microwave	(B1)	allow statement that red shift is observed or that blue light becomes red or gamma from big bang has become microwave
	further away the galaxy the faster the speed of recession	(B1)	becomes red of gamma from big bang has become microwave
	the existence of a (2.7 K) <u>microwave</u> background radiation	(B1)	
	there is more helium in the universe than expected	(B1)	
	MAX 4	В4	
	Total	[16]	

Q	Question		Answer		Guidance
2	(a)		 Any <u>three</u> from: (Interstellar dust and gas) cloud is drawn together by gravitational force / gravity Loss in (gravitational) PE / KE increases / temperature increases Fusion (of protons / hydrogen nuclei) takes place Energy is released in fusion reactions A stable star is formed when gravitational pressure is equal to internal / gas / radiation pressure QWC: The steps in the process are correctly sequenced 	B1 × 3 B1	Allow: 'gravitational collapse'
	(b)	(i) (ii)	 Any two from: (extremely) dense / (very) hot / low luminosity no fusion reactions occur it is a remnant of a low-mass star correct reference to Fermi pressure / electron degeneracy / Chandrasekhar's limit Red giant identified (It is cooler but has) large surface area (and therefore 	B1 × 2 B1 B1	
			radiates large amounts of energy)	8	
			Total	0	

C	Question		Answer		Guidance	
3	(a)		The night sky should be bright / have uniform brightness (but it is not)	B1		
			The line of sight ends on (the surface of a star) or 'number of stars $\propto r^2$ and intensity $\propto 1/r^2$ '	B1		
			Any <u>two</u> assumptions about the Universe: Infinite / uniformly distributed matter or stars throughout / static / infinite age	B1		
	(b)		(recessional) speed of $\underline{galaxy} \propto its$ distance (from the Earth)	B1	Allow : $v = H_0 x$, $v =$ (recessional) speed of galaxy, $x =$ distance and H_0 is Hubble constant / a constant	
			The universe is finite / it is expanding / it has a beginning / visible light is red-shifted (because of expansion of space) (AW)	B1		
	(c)	(i)	$v = H_0 x$			
			$3.4 \times 10^7 = H_0 \times 1.4 \times 10^{25}$	C1		
			$H_0 = 2.4 \times 10^{-18}$	A1		
			unit: s ⁻¹	B1	Note : This is an independent mark Note : Allow full credit for an Hubble constant of 75 with unit km s ⁻¹ Mpc ⁻¹	
		(ii)1	age = $\frac{1}{2.4 \times 10^{-18}}$	C1	Possible ecf from (i)	
			age = 4.17×10^{17} (s) age = 1.3×10^{10} (years)	A1		
		(ii)2	distance = $4.17 \times 10^{17} \times 3.0 \times 10^{8}$ (= 1.25×10^{26} m)	C1		
			distance = $\frac{4.17 \times 10^{17} \times 3.0 \times 10^8}{3.1 \times 10^{16}}$			
			distance = 4.0×10^9 (pc)	A1	Possible ecf from (ii)1	
			Total	12		

(Question		Answers		Guidance	
4	(a)		y <u>four</u> from: (Sun / star formed from) dust cloud /nebula / (hydrogen) gas <u>Gravitational</u> collapse (AW) Temperature of (dust) cloud increases / KE (of cloud) in- creases / (cloud) heats up Fusion occurs (when temperature is about 10 ⁷ K) Protons / hydrogen nuclei combine to make helium (nuclei) Stable size star is produced when thermal / radiation pres- sure is equal to gravitational pressure	B1× 4	Must use ticks on Scoris to show where the marks are awarded	
			Steps sequenced correctly – QWC mark	B1		
	(b)		 Any two from: Very dense star Hot star / high surface temperature / low luminosity No fusion reactions take place / leaks away photons (from earlier fusion reactions) Its collapse is prevented by Fermi pressure / mass less than 1.4 solar masses (AW) 	B1×2	Must use ticks on Scoris to show where the marks are awarded Not: small in size, but <u>allow</u> 'smaller than main sequence star / Sun'	
	(c)	(i)	Flat or universe will expand towards a (finite) limit or the rate of expansion will become/tend to zero	B1		
		(ii)	Hubble constant = 1/age $H_0 = 1/4.4 \times 10^{17} (= 2.273 \times 10^{-18} \text{ s}^{-1})$ density = $\frac{3H_0^2}{8\pi G}$	C1		
			density = $\frac{3H_0^2}{8\pi G} = \frac{3 \times (2.273 \times 10^{-18})^2}{8\pi \times 6.67 \times 10^{-11}}$ density = 9.2 × 10 ⁻²⁷ (kg m ⁻³) or 9.24 × 10 ⁻²⁷ (kg m ⁻³)	C1 A1	Allow: 2 marks for a bald 9.24×10^{-27} (kg m ⁻³) answer Note: This mark can only be scored if working is	
			density is about 10 ⁻²⁶ (kg m ⁻³)	A0	shown	

Question		ers		Guidance	
	(iii)	number = $9.24 \times 10^{-27}/1.7 \times 10^{-27}$ number = 5.4 (Allow 5)	C1 A1	Possible ecf from (c)(ii) Allow: 2 marks for ' $10^{-26}/1.7 \times 10^{-27} = 5.9$ or 6'	
(d)		$\frac{1}{2}mv^{2} = \frac{3}{2}kT / \text{ speed } \propto \sqrt{T}$ ratio = $\sqrt{\frac{10^{8}}{2.7}}$ ratio = 6.1 × 10 ³ or 6.09 × 10 ³	C1 A1		
		Total	15		